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ABSTRACT 

We study the existence of solutions to the orthogonal dynamics equa- 

tion, which arises in the Mori-Zwanzig formalism in irreversible statisti- 

cal mechanics. This equation generates the random noise associated with 

a reduction in the number  of variables. If L is the Liouvillian, or Lie 

derivative associated with a Hamiltonian system, and P an orthogonal 

projection onto a closed subspace of L 2, then the orthogonal dynamics 

is generated by the operator (I - P)L. We prove the existence of clas- 

sical solutions for the case where P has finite-dimensional range. In the 

general case, we prove the existence of weak solutions. 
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1. In t roduc t ion  

The Mori-Zwanzig formalism is a central paradigm in irreversible statistical 

mechanics [11, 20, 4]. It is a formal procedure whereby a dynamical system is 

reformulated as a lower-dimensional system for a selected set of variables (the 

"resolved" variables); the resulting system, which is often called a generalized 

Langevin equation,  has memory (contains an integral over past values of the 

resolved variables) and contains a time-dependent function, often interpreted as 

"noise", which depends on the full initial data, and solves an auxiliary equa- 

tion known as the or thogonal  dynamics  equation.  Within an appropriate 

probabilistic setting, the noise function can be viewed as a random process. 

This formalism has an adjoint version which describes the evolution of marginal 

probability measures [12]. The Mori-Zwanzig formalism has recently received 

renewed attention within the context of variable reduction and stochastic mod- 

eling [1, 2, 10, 9]. 

The key element in the Mori-Zwanzig procedure is a projection operator. 

Functions that depend on all the coordinates of the system are projected onto a 

subspace of functions that depend only on the resolved variables; the projection 

is an orthogonal projection in the L 2 sense. There is freedom in the choice of 

projection, or equivalently, in the choice of the subspace onto which functions are 

projected. Most common is the projection onto the space of functions that are 

linear in the resolved variables. Another possibility is to project functions onto 

the subspace of all functions of the resolved variables; within the probabilistic 

setting this corresponds to a conditional expectation [20, 1]; this projection can 

be viewed as optimal, but may be difficult to compute. There exists a range 

of intermediate choices that can be viewed as increasingly high-dimensional 

approximations of the conditional expectation. 

The validity of the Mori-Zwanzig formalism relies on the well-posedness of 

the orthogonal dynamics equation, which has always been taken for granted. 

The existence of solutions, i.e., the existence of a noise process, is however a 

subtle issue, which we address in the present paper. Our main results may be 

summarized as follows: if the range of the projection is a finite-dimensional 

subspace of L 2, as is the case in most of the statistical mechanics literature 

(see, e.g., [4]), then the existence of classical solutions may be proved. Our 

proof is constructive, based on a reduction of the orthogonal dynamics to an 

integral equation of Volterra type. In the more general case, for example, when 

the projection is a conditional expectation, we only prove the existence of weak 

solutions. The proof closely follows the lines of Friedrichs' existence proof for 
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symmetric hyperbolic systems [6]. 

The paper is organized as follows. In Section 2 we present the Mori-Zwanzig 

formalism: we introduce the Hamiltonian dynamics, the corresponding proba- 

bility space, various projection operators, the orthogonal dynamics, and derive 

the generalized Langevin equation. In Section 3 we address in general the exis- 

tence of the orthogonal dynamics. In particular, we provide a simple example, 

which demonstrates how solutions may fail to exist in certain cases. The ex- 

istence of orthogonal dynamics for the case where the range of the projection 

operator is finite dimensional is proved in Section 4. The existence of weak 

solution for general projections is proved in Section 5. 

2. The Morl-Zwanzig formalism 

Consider a Hamiltonian system, 

(2.1) dq~ _ O H  dpi _ O H  
0 ' dt pi dt  Oqi 

where q = (q l , . . - ,qn)  T and p = (P l , . . . ,Pn)  T are n-dimensional vectors and 

H = H ( q , p )  is the Hamiltonian. Supplemented with 2n initial conditions, 

q(0), p(0), Hamilton's equations (2.1) govern the trajectory of a point in a 2n- 

dimensional Euclidean space, F = I~ ~n . 

We rewrite equations(2.1) in a slightly more abstract form: let points in F 

be denoted by a 2n-dimensional vector, x = ( x l , . . . ,  x2n)  T,  where each of the 

components x i  is either a position or a momentum coordinate; let x2~-1 = qi 

and x2i = pi.  Hamilton's equations induce a flow map, ~t: F ~ F, which 

maps every initial value x to its evolute ~ t ( x )  at time t. Equations(2.1) can be 

rewritten as a differential equation for ~t(x): 

d t 
¢pi(x) = bi(cPt(x)) i = 1 , 2 , . . . , 2 n ,  

= 

where b(x)  = ( b l ( x ) , . . . ,  b2n(X)) T is the Hamiltonian vector field, b: F ~ II~ 2n. 

Hamiltonian vector fields are incompressible, 

2n 

(2.2) o b (x) = o, 
i=1 

and as a result preserve the Lebesgue measure in F; we use 0i to denote the 

partial derivative with respect to the i-th variable. In particular, Hamiltonian 
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dynamics preserve any absolutely continuous measure, #(dx)  = Q(x)dx, if the 

density •(x) is a function of the Hamiltonian. An invariant (probability) mea- 

sure of particular interest in statistical mechanics is the canonical measure, 

which corresponds to a probability density of Q(x) = Z - l e  -~H(x), where/~ > 0 

is the inverse temperature and Z is a normalization constant. 

Hamiltonian dynamics have an equivalent formulation in terms of an evolution 

equation for functions on F [14]. By adopting this alternative framework one 

obtains a linear evolution equation on an infinite-dimensional space. Let L be 

the differential operator 

2n 

(2.3) L = E bi(x)Oi, 
i----1 

known as the Liouvi l l ian ,  or the Lie derivative associated with the vector field 

b(x), and consider the linear differential equation 

d t Lut (x)  
(2.4) ~ u  (x)= 

u0(~) = g(x) 

for some function g: F ~ R. Equation (2.4) is known as the Liouvi l le  equa-  

t ion.  Its solution is ut(x)  = g((pt(x)) as we verify: 

2n 
d t 

i=1 
2n 2n 

= Z °~g(~(x)) Z oj~(x), b~(x) 
i----1 j----1 

2n 

= ~ b~ (x)Oj [g(~ (x))] 
j=l 

= Lg(~(x)), 

where the identity bi(~t(x) ) = ~"~n=l O j ~ ( x )  . bj(x) = i(p~(x) is an immediate 

consequence of the semigroup property ~t (~s ix)) = ~s(~t (x)); differentiate 

both sides with respect to s and set s = 0. The flow map ~t(x) ,  x fixed, 

constitutes a family of characteristic curves for the hyperbolic system (2.4). 

We introduce the semigroup notation [13], 

g(~(x)) = (e~Lg)(x), 

where e tL is the evolution operator associated with the Liouville equation (2.4). 

It is easily verified that  etLL = Le tL. In the particular case where g is the i-th 
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coordinate, g(x) = 7ri(x) = xi,  the solution is (ctLg)(x) = 7h(~t(x)) = ~ ( x ) ,  

the i-th component of the trajectory. 

Given a measure # on F, functions g can be viewed as random variables, 

and etng can be viewed as a random function, or a stochastic process. Let 

#(dx)  = Q(x)dx be a probability measure, where the density Q(x) is a function 

of H(x); we assume that  Q(x) is continuous and strictly positive for all x E F. 

The expected value of a function g with respect to the measure # is given by 

E[g] = J/r g(x)e(x)dx .  

We endow the space of functions on F with the inner product, 

(f,  g) = s[ /g] ,  

which makes it a Hilbert space L 2 = L2(]~ 2n , #). By the incompressibility con- 

dition (2.2) and the invariance of the measure, the operator L is skew-symmetric 

in this Hilbert space: (L f ,  g) = - ( f ,  Lg),  for all f , g  in the domain of L. 

Non-equilibrium statistical mechanics is based on the premise that  one cannot 

solve the full system of equations(2.1), but can only follow the evolution of a 

smaller set of variables (the "resolved" coordinates). The remaining variables 

(the "unresolved" coordinates) are considered as random. For concreteness, 

we consider the case where the resolved variables are the first 2m coordinates 

= (xl , . . . ,X2m).  Let 2 = (X2m+l,. . . ,x2n) denote the vector of unresolved 

coordinates; thus x -- (~, 2). Similarly, let ~t(x)  = ( ~ l ( X ) , . . . ,  ~ m ( X ) )  denote 

the trajectories of the 2m coordinates of the solution that  we focus on. 

The Mori-Zwanzig formalism uses a projection operator, P,  which projects 

functions in L 2 onto a subspace of functions that  depend only on the resolved 

variables 2, i.e., functions on II~ 2m . Let f E L2; most widely in use is the l inear  

p ro jec t ion ,  

(2.5) 
2 m  

(Pf)(x)  --- E ai-j 1 ( f 'x i )x j '  
i,j=l 

where the ai-j 1 are the entries of the 2m × 2m matrix whose inverse has entries 

a~j = (xi, x j) .  This is an orthogonal projection of functions in L 2 onto the 

subspace of linear functions of the resolved coordinates 2. 

More generally, let L 2 C L 2 denote the space of functions that  depend only 

on 2. We may pick a set of functions in L ~, say h~(~), v = 1, 2 , . . . ,  M; for 
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convenience we make them orthonormal, (h ~, h ~) = 5~.  We define a projection 

M 

(2.6) (P f)(2) = E ( f ,  h~)h~(~), 
v----1 

to which we refer as a f ini te-rank project ion.  Finally, we consider the pro- 

jection of f onto the span of all functions in L 2, given by 

(2.7) (Pf)(~) = f f(~'  2)Q(~, 2)d~ 

where dSc = d x 2 m + l ' . ,  d x 2 n .  In the context of probability theory, P f  is the 

condi t ional  expec ta t ion  of f given 5, usually denoted by Elfin] (see, e.g., 

Chung [3]). It is the best least-square approximation of f by a function of ~: 

E l f ( x )  - E [ f l ~ ] l  2 _< E[/(x) - g(~:)[2 

for all functions g E L 2. Note that since L is separable, it follows that there 

exists an orthonormal set of functions, {h~(~)}~_l, such that 

cx) 

(Pf)(~) = E ( P f ,  hV)h"(3c) = E ( f ,  hV)h~(2). 
v=l v=l 

Thus, the conditional expectation is the limit of a finite-rank projection as 
M --4 cc and the h v span L 2. 

Let P be any of the above three projections. The Mori-Zwanzig formalism 

starts by splitting the time derivative of the resolved components of the trajec- 

tory ~}(x) = etLTrj(x), j = 1,2 , . . . ,  2m, into an expression that depends only 

on ~t(x) plus a remainder: 

d tL (2.8) ~ e  7~j .-~ etLLTrj = etLbj = etLpbj + etLQbj, 

where Q = I - P. We define R = Pb, which is a vector field in ll~ 2m . The first 

term on the right-hand side, etnRj, is consequently a function of the resolved 

components of the solution: (etn pbj)(x) = Rj (~t (x) ). 
The formalism proceeds by splitting the remaining term, etnQbj, as follows. 

An auxiliary evolution operator, e tQn, acting on functions in the null space of 

P is introduced: wt(x) = etQng(x) is defined as the solution of the o r thogona l  

dynamics  equat ion:  

d t QLwt(x) 
(2.9) ~ w  ( x ) =  

w°(x) = g(x) 
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with Pg = O. Assuming that e tQL is well-defined, the evolution operators e tL 

and e tQL satisfy the Dyson formula 

f0 t e tL = e(t-s)LpLeSQLds + e tQL, 

which can be viewed as an application of Duhammel's principle. Thus the second 

term on the right-hand side of (2.8) takes the form 

~0 t etLQbj = e(t-s)L pLeSQLQbjds + etQLQbj. 

Defining Ft: IR 2n ~ ~2m and Kt: ~2m ~ ~2m with components, 

FJ = etQiQbj, h'~ = PLFJ,  

equation (2.8) reduces to the general ized Langevin equa t ion  

~0 t --~ed tL 7rj -.--- etL Rj + e(t-s)L I(~ds + F t ,  

or, in a more transparent form, 

(2.10) /0 ~ j ( x )  = Rj(~t(x))  + K~(~t-S(x))ds + FJ(x). 

Equation (2.10) is an identity between functions. Its right-hand side has a 
conventional interpretation. The first term depends only on the instantaneous 

value of the resolved variables, and is therefore called the Markovian  vector 

field. The second term depends on x only through the value of ~s (x) at times s 

between 0 and t; it therefore embodies m e m o r y  effects. The third term depends 

on the full knowledge of the initial conditions x; it is viewed as a noise term 

with statistics determined by the initial conditions. The orthogonal dynamics 

(2.9) can therefore be viewed as the noise generator for the generalized Langevin 

equation (2.10). 

While the Mori-Zwanzig formalism is usually presented based on a canonical 

measure, it is also of interest to consider it within a micro-canonical framework, 

i.e., assuming that the total energy of the system is given, so that the dynamics 

take place on an energy manifold. The geometrical background needed for such 

a formulation is presented in the Appendix. 
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3. Exis tence  of or thogonal  dynamics :  general  considerat ions  

The Mori-Zwanzig formalism relies on the well-posedness of the auxiliary evolu- 

tion operator e tQL, defined by (2.9). Note that e tQL acts on Qbj, which belongs 

to the orthogonal complement of the range of the projection P. We introduce 

the following subspaces of L2: 

Jgf = {u E L 2 : Pu  = u} , ~YY± = {u E L 2 : P u  = O} . 

The Mori-Zwanzig formalism relies on the assumption that QL is the genera- 

tor of a semigroup in ~Yt'± (for general references on semigroup theory see [13, 

15, 5]). Since L itself is a generator of a unitary semigroup, then by Stone's 

theorem [18] it is not only skew-symmetric, but also skew-adjoint in L 2. The 

projection operators P and Q are self-adjoint operators in L 2, from which it 

immediately follows that P L P  and QLQ are skew-symmetric operators in L 2, 

hence P L  and QL are skew-symmetric in JYY and ~t'± respectively. Resorting 

again to Stone's theorem, the existence of orthogonal dynamics boils down to 

the question whether QL is a skew-adjoint operator in ~ ± .  

Naively, it may seem that the composition of a (self-adjoint) projection and 

a skew-adjoint operator is always skew-adjoint. This is the case when A is a 

bounded, skew-symmetric operator and Q is an orthogonal projection. Then, 
QAQ has an extension QAQ which is skew-adjoint and the semigroup 
exp( tQAQ) is unitary in L 2. This may fail for unbounded operators as the 

following example shows. 

Example: Consider the Hilbert space L2(I~) and let (Au)(x)  = (d/dx)u(x)  

with domain ~(A) = Wo1'2(It(_) ® W~'2(II~_) C L2(~) (this domain coincides 

with the set of absolutely continuous functions in L2(~) that vanish at the 

origin, and whose derivative is in L2(I~)). A direct calculation shows that A 

is a closed, skew-symmetric operator which has a skew-adjoint extension with 

domain W1'2(l~). Let Q be the orthogonal projection: 

f o, x < o, (Ou)(x) u(x) ,  x > 0. 

Then QAQ is also skew-symmetric on WJ '2 (li¢_)® W 1'2 (I[¢~_), but has no skew- 

adjoint extension as its deficiency indexes are not equal [19]. In particular, QA 

does not generate a semigroup on the range of Q. 

While the skew-adjointness of QL in ~ ±  turns out to be a subtle issue when 

P is the conditional expectation (2.7), it is possible to show, under quite general 
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conditions, that PL is skew-adjoint in dY, or equivalently, generates a unitary 

semigroup in rig. This is interesting because QL = L - PL is then the sum 

of two skew-adjoint operators. This does not imply anything for QL, however, 

since L and QL are defined on different subspaces. 

Specifically, let L be as in (2.3) and let f E ~(L)  N ./£, i.e., f = f(~). Then, 

and 

2n 2m 

(L:f)(x) = Z bj(x)Ojf(~) -= Z bj(x)Ojf(:~), 
j = l  j = l  

2m 2m 

(PLf)(2) = Z(Pbj)(2)Ojf(:~) = ~ Rj(:~)Ojf(:~), 
j----I j----i 

where, as before, Rj = Pbj is the Markovian vector field. 

PL generates a semigroup in .//Y for the same reason that L generates a 

semigroup in L2--because the equation 

2m 

(3.1) ~ud t (̂x) = PLut(:~) = Z Rj(x)Ojut(x) 
j = l  

is hyperbolic and can be solved by the method of characteristics. Indeed, let 

¢t(2) be the flow map associated with the vector field R: 

d 
(3.2) d-tCJ(2) = Rj(@t(2))' j = 1 ,2 , . . . ,2m.  

= 

Then 
= 

solves (3.1). To complete the argument it is necessary to determine under what 

conditions the ODEs (3.2) have a solution. In most cases of interest, the func- 

tions bj(x) are differentiable and the projection P preserves differentiability, 

hence the functions Rj(x) are differentiable and (3.2) has a unique (local) solu- 

tion. Note, moreover, that if Q = Q(H), then 

~(~) = f 
N(H(x))d2, 

with N(H) = f H  O(s)ds, is a constant of motion for solutions of (3.2). 
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4. Exis tence  of  or thogonal  dynamics :  finite rank p ro jec t ion  

In this section we show the existence of orthogonal dynamics for the case where 

the projection P is given by the finite-rank projection (2.6), i.e., has finite- 

dimensional range. Our proof is constructive and is based on a reduction of 

(2.9) to a Volterra equation. 

THEOREM 4.1: Let h ~ E ]2, v = 1 , 2 , . . . , M ,  be an orthonormal set, h ~ E 

~ ( L ) .  For any function g E ~ ±  the orthogonal dynamics equation (2.9) has a 

unique solution on any bounded time interval. 

Proof: We start by rewriting the orthogonal dynamics equations (2.9) in the 

following equivalent form: 

d t -~w (x) - Lwt(x)  = - P L w t ( x ) ,  

w°(x)  = g(x),  

where g belongs to the null space of P. Using Duhammel's principle with the 

left-hand side as an inhomogeneous term, we obtain the integral equation 

wt(x)  = etLw°(x) -- e ( t - s )LpLwS(x)ds .  

Substituting the explicit expression (2.6) for the projection, we have 

(4.1) wt(x)  = etLw°(x) -- c~(s)e(t-~)Lh"(2)ds, 

where 
d'(s)  = (Lw s, h~'). 

Given the functions cV(t), (4.1) is an explicit representation of wt(x)  in terms 

of the solution operator e tL of the Hamiltonian dynamics. 

To find the coefficient functions cV(s) we apply L on both sides of (4.1), and 

take an inner product with each of the basis functions h ' ,  # = 1, 2 , . . . ,  M. This 

yields the Volterra equation 

(4.2) c"(t) = f " ( t )  - H'~'(t  - s)c~(s)ds, 
v = l  0 

with a kernel matrix 

H ~ ( t )  = (LetLh ~, h ~) = --(etLh ~, Lh ~) = - ( h  ~, Le - tLh  ~) = - H ~ ' ( - t ) ,  
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and a forcing vector 

f ' ( t )  = (LetLw °, h ") = - ( w  °, Le-tLh ' ) .  

The problem of solving the orthogonal dynamics (2.9) has been thus reduced 

to that of solving the Volterra equation (4.2). Note that both the forcing f ' ( t )  
and the kernel H "~ (t) are autocorrelation functions with respect to the Liouvil- 

lian time evolution e tL. These quantities can be calculated by averaging over a 

collection of experiments or numerical simulations, with initial conditions drawn 

from the equilibrium distribution. 

By the unitarity of the evolution operator e tL it follows that 

IH~(t)[  _< [[h~[[[[Lh~[[, [f~(t)] < [[w°[[[[Lh~[[. 

Since, as a result of the continuity of the semigroup e tL, H " ( t )  and f ' ( t )  are 

continuous functions of time, then there exist solutions to (4.2) on any bounded 

time interval (see, e.g., [7] for a general reference on the Volterra equation). 
| 

5. Exis tence  of  weak so lut ions  

Henceforth we consider P to be the conditional expectation (2.7). We prove the 

existence of a weak solution to the orthogonal dynamics (2.9). The main results 

are stated in Theorem 5.11 and Corollary 5.12. Our approach follows Friedrichs' 

construction of weak solutions for a symmetric hyperbolic system [6] (see also 

John [8]). For Friedrichs' method to be applicable, we first need to show that L 2 

functions in the null space of P can be approximated, within this subspace, by 

smooth functions with compact support. This is done in Lemmas 5.1 and 5.2. 

Throughout this section it is assumed that the vector field b(x) is differentiable, 

and that the density Q(x) is continuous and strictly positive. 

We prove the existence of solutions on a finite time interval [0, To]; To may 

be taken arbitrarily large. Functions wt(x) are defined on the domain 7~ = 

[0, To] x ll~ 2~ , which is bounded by the two surfaces 

"T={To}XR 2n. 

Following standard notations, we denote by C(7~) the set of continuous functions 

on T~, and by Ck(7~), k = 1, 2 , . . . ,  oo, the set of k times differentiable functions. 

We denote by Cc(Tt) and Cck (7~) the sub-classes of functions that have compact 

support in the x variables; specifically, u e Cck(T~) if it is in Ck(7~), and in 
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addition supp (u) C [0, To] × K for some K C ~2n compact. Given a function 
u E Ck(7~), we denote by Su and Tu its restriction to the surfaces S and T, 

respectively. Clearly, Su E Ck(S) and Tu e Ck(T). The same holds for C k 
replaced by Cc k. 

We endow the spaces C~(T~), C~(S), and C~(T) with the inner products 

(Ul, u2)7-~ : .Iv u~ (x)ut2 (x)Q(x)dxdt, 

(Vl, v2)s -- .f¢: Vl (x)v2 (x)Q(x)dx, 

(wl, w2)7 = fT Wl (X)W2(x)Q(x)dx. 

The corresponding norms are denoted by H" IIn, H" IIs, and ]]. HT, respectively. 
These spaces can be completed into Hilbert spaces, L2(7~), L2(S), and L2(T). 

LEMMA 5.1: The space of functions 

C (n) = {u • C (n) : S u  = T u  = 0} 

is dense in L 2 (T~). 

Proof: Cc ~ (~) is dense in L 2 (7~) by definition. Functions in Cc ~ (T~) can further 

be approximated by functions in C ~ ( ~ )  as is well known (see [16]). | 

Consider now the conditional expectation, P, which is a projection operator 
on L2(ll~2n). Since L2($) and L2(T) are isomorphic to L2(~2n), the projection 

is automatically defined on these spaces. On L2(T~) we define, with a slight 

abuse of notation, P to act pointwise in time: 

(pu)t(x) = f Q(2, 2)d2 

It is easily verified that P is an orthogonal projection on a closed subspace of 

L2(n). 
The orthogonal dynamics (2.9) takes place in the null space of P, hence we 

introduce the following spaces: 

L~(~)  = n2(n)  n ~ / (P) ,  

L~(S) = L2(S) N ~¥(P), 

L~(T) = L2(T) N Jd(P). 

The following approximation lemma is analogous to Lemma 5.1. It states that 

functions in L~_ (7~) can be approximated by smooth functions of compact sup- 

port within this subspace. 
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LEMMA 5.2: The space of functions C ~ ( n )  M L2 (7~) is dense in L ~ ( n ) .  

Proo£" Let u E L~_(7~). Since L~(n) c Le(T~), then by Lemma 5.1 there 

exists, for all e > 0, a function v E C~ o(~)  such that  

supp v C [0, To] x [-b, b] x . - . x  [-b, b] C [0, To] x ~2n, 

for some b > 0, and II u - viin <_ e/3. There is, however, no guarantee that 

v E L2(R);  we can only deduce that the projection of v on L~_(T~) is small, 

IIPvlln = [ [P (u  - v ) [ I n  <_ I[u - vHn  _< e/3.  

On the other hand, (I - P)v E Cc~(7~) M L~_(7~), but will, in general, not have 

compact support. 

We next define 
P 

g(2) = J Q(2, 2)d2, 

which is a positive, differentiable function of 2, and 

f(:~, a) = [ Q(~, £')d£', 
d_<a 

which is a differentiable, increasing function of a, with f (~ ,0)  = 0. Since 

lim~_+~ ](~,  a) = g(2), then it follows that  for every 2 there exists an a = A(2) 

such that  f (2 ,  a) = lg(k) .  Then we set 

R =  m a x A ( ~ ) + b  
I~,l<b 

(here we use the fact that  A(2) is a continuous function of 5, which follows from 

the implicit function theorem). 
Let now ~(2) be a non-negative C ~ (R e(s-m) ) function with compact support, 

0 < ~(~) < 1, and v/(~) = t if [xi[ < R, i = 2m + 1 , . . . ,  2n. By our choice of R 

it follows that for all 2 such that [xi[ < b, i = 1 . . . .  ,2m, 

f ~/($)~o(3:, :~)d$ flxd_<R ~o(&, ~)d$ 1 
(P~/)(~) = f Q(~,~)d~ -> fe(~,5:)d3: >-5' 

hence 

Finally, consider the function 

< 2 .  - 

wt(~:, 5:) = vt(~:, ~) - (Pv)t($) (Pr/)($:)" 
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Clearly, Pw = 0, hence w E L~_(T~). It has compact support in T~ as Pv has 
compact support in the (t, 2) variables and ~? has compact support in the 2 

variables; since all the functions are also smooth we have w E C~,0(/~ ) N L~_(T~). 

It remains to show that w approximates u. Indeed, 

ilu - wll~ < Ilu - vli~ + IIv - wll~ 

< 5 +  p v . N  r~ 

< - + 2 - - .  
- 3  3 

This completes the proof, l 

We are going to prove the existence of a (weak) solution u E L~_(~) to the 

orthogonal dynamics equation 

E ~ ( x / =  ~ - QL u~(x) = 0, 

with u ° E L~_($). Since the flow field b(x) is continuous, then L, which is a first- 

order differential operator, maps C~ (~) into Co(N). Note, however, that Qu 

does not necessarily have compact support even if u does. Hence, the operator 

E maps Cc1(7~) N L~_(7~) into C(~)  n L~(~).  Weak solutions are defined with 
~ ~ 

respect to a weak extension of the operator E. We construct operators E, S, 

which we show to be extensions of E, S (called weak extensions), and prove 

that for every g e L 2 (S) there corresponds a u e L~_ (T~) such that /~u = 0 and 

Su = g. The definition of E, S is based on the following adjointness formula: 

LEMMA 5.3: The identity 

(5.1) (v, Ew)n + (Ev, w)n + (Sv, Sw)s - (Tv, Tw)~r = 0 

holds for all v, w E C 1 (n) N L~ (Tt). 

Proof." This is an immediate consequence of the skew-symmetry of QL in 
C~(S 2n) N L~_(I~2~): 

(v, E w ) n =  / n v t ( x ) [ d w t ( x ) - Q L w t ( x ) l o ( x ) d x d t  

d t vt(x)[QLwt(x)]}O(x)dxdt = /~ { d[~(x)~(x)]-w~(x)~v(x)- 
= (Tv, Tw)T - (Sv, Sw)~v - /nwt (x )  [ dv t (x )  - QLvt(x)] o(x)dxdt 

= (Tv, TW)T - (Sv, Sw)8 - (Ev, w)n. i 
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The weak extensions /), S of the operators E, S are defined on a space 

L~_,~(~), which we define next: 

Det~nition 5.4: The space L~_,w(~ ) consists of all functions v • L~_(~) for 

which there exist functions f E L~_(~) and g • L~_ (S), such that  the relation 

(5.2) (v, Ew)n  + (f,  w)Tz + (g, Sw)s  = 0 

holds for all w • Cc 1 (~) M L~_ (P~) for which Tw = O. 

By definition L~_,~(?~) C_ L~_(7~); by the adjointness formula (5.1), v • 

C 1 (7~) N L~(7~) satisfies (5.2) with f = Ev and g = Sv, thus we have the 

following hierarchy: 

Clc (Tt) M L~ (n)  C_ L~ ,w(n  ) C_ L~ (Tt). 

The following two lemmas are needed to establish that  the mappings v ~ f 

and v ~ g are uniquely defined, and extend the operators E, S. 

LEMMA 5.5: Equation (5.2) is satisfied for v = 0 only if  f = 0 and g = O. 

Proof: Let v = 0 and suppose that  (5.2) is satisfied for some f E L~_(T/) and 

g E L~_(S). Since (5.2) holds for all w • Ccl(T/) M L~_(T/) for which Tw = O, 
it certainly holds if we further restrict w to satisfy Sw = 0. In this case, we 

remain with 

(f, w)~ = o 

for all w C Cl,o (~)fq L~_ (~). By Lemma 5.2 this set is dense in L~_ (n) ,  therefore 

f = 0. Lifting now the restriction on Sw, (5.2) reduces to 

(g, S w ) s  = 0 

for all w E CI(R) f'l L~_(7~) which satisfy Tw = O. It is easy to see that  the 

restriction of Cc 1 (T/) fq L~ (n)  functions to the surface t = 0 is dense in L~_ (S), 

hence g = O. I 

LEMMA 5.6: Let v E L2,w(Tt); then the functions f ,  g in (5.2) are uniquely and 

linearly determined by v. 

Proof." Suppose that  (5.2) is satisfied by two sets of functions f l ,  gl and f2, g2: 

(v, Ew)~ + (S1, w)~ + (gl, Sw)s = 0, 

(v, Ew)~  + (A, w)7~ + (9~, Sw)s  = 0. 
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Subtracting one from another we get 

(O, EW)T~ "~ ( f l  - -  f 2 ,  W)T~ AF (gl - -  g2, SW)$ = 0, 

for all w E C 1 (T~) M L~_ (7~) which satisfy T w  = 0. By the previous lemma this 

implies f l  = f2 and gl : g2- The linearity of v ~ f and v ~ g is an immediate 

consequence of the bilinearity of the inner product. I 

COROLLARY 5.7: Let v E L~,~(Tt): the linear mappings v ~ f ,  v ~ g, 

which we denote by f = Ev  and g = Sv, are weak  ex t ens ions  (the so-called 

Friedrichs extension) of the operators E and S in the sense that 

(5.3) (v, Ew)~ + (~v, w)~ + (~v, S~)s = 0 

for ali w • Cl (u)  n L~(n)  for which Tw = o. 

Next, we define a s t r o n g  e x t e n s i o n  of the operators E and S: 

Definition 5.8: The space L~_,s(T/) consists of all functions v • L~_(T~), for 

which there exist functions f • L 2 (T~), g • L 2 ($), and a sequence of functions 

vn • C 1 (Tl) M L 2 (Ti), Tvn = 0, such that  

(5.4) lim [[Vn - v[[n = 0, lim [IEvn - / f i n  = 0, lim [[Svn - gl[s = O. 
n--~ Oo n--~OO n--+ (X) 

LEMMA 5.9: I f  V • L2,s(T~) then v • L~,w(T~), i.e., 

Clc(T~) M L2L(n) C_ L~,s(?~ ) C L~,w(U ) C_ L~(Tt).  

Proof'. Let v • L2L,s(n ) and vn be a sequence in Ccl(T~) M L2(?~), Tvn = O, 

satisfying (5.4). For all w E Ccl(?~) f3 L2L(~ ) for which T w  = 0, the adjointness 

formula (5.1) reads 

(vn, Ew)u + (Evn, w)~ + (Sv~, Sw)s = O. 

Taking the limit n --+ co we have 

(v, Ew)~ + (f, ~)~ + (g, Sw)s = O, 

which by Definition 5.4 implies that  v E L~_,w(T~ ) wi th /~v = f and Sv = g. 

I 

Thus, the mappings v ~ f ,  v ~ g in Definition 5.8 are extensions of the 

operators E, S; they are called s t r o n g  ex t ens ions  and are denoted by f = /~v ,  

g----SV. 

We next derive a so-called energy inequality, which holds for all functions in 

L2L,s(TQ: 
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LEMMA 5.10:  

(5.5) 

Proof.'. 
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There exists a number 7 > 0 such that for all v E L~,s(7~), 

Ilvll~ + II~vll~ _< ~211~vll~. 
Consider first v E Cc I (7~) M L~_ (TO), Tv  = O. For all 0 < t < To we have 

d ro-t  2 = _2(vTo-t ,  dvTo-t  ~ 

= - 2  (v T°-~ , Ev  n - t  + QLv T°-t) L:(R~) 

= - 2  (v t , E v  t) L~(R~) 

< 211vTo-t IIL~(~=")IIEv T°-t II L~(R~) 
To- t  2 To- t  2 ___ IIv IIL=(~=o) + IIEv IIL~(R==), 

where we have used the skew-symmetry of QL in C 1 (R 2n) N L~_(R 2~) in the 

passage from the second to the third line. 

Rewriting this differential inequality as 

_ To-t To-t2 eTo-tIIEvTo-tII~L~(R=,,) d ( e  IIv IIL~(R:,,))< (5.6) dt 

and integration over [0, To] gives 

(5.7) IlSvll,~ < dr°llEvll~. 

Integrating (5.6) over [0, t], followed by a second integration over [0, To], yields 

on the other hand 

(5.8) ]M]~ -< ( cT° - 1)]JEvi]~. 

Combining (5.7) and (5.8) we obtain (5.5) with ~2 = 2eTo _ 1. This inequality 

holds for all v E L2,s(T~) by the very definition of this space and the corre- 

sponding operators/~ and S. I 

We are now in measure to prove the main theorem from which follows the 

existence of weak solutions to the orthogonal dynamics equation. 

THEOREM 5.11: For all f E L2L(TI) and g E L~(S)  there exists a function 

u E L2z,w (Tt) for which 
~ u =  l ,  ~ u =  g. 

Proof: Consider the set of functions v E Cc 1 (7~) M L~_(T~) for which Tv  = 0, 

endowed with the inner product 

(v, w ) ~  = (Ev, EW)T~. 
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The corresponding norm is denoted by I1" Itye (note that E v  = 0 implies by 

the energy inequality (5.5) that v = 0). The Hilbert space obtained by the 

completion of this space is denoted by W.  

Let Vn • C 1 (T~)AL~_(T¢), TVn = 0, be a Cauchy sequence in ~ .  By definition, 

I l E v n  - E v , , l l ~  = I1~,~ - ~ , ~ t 1 ~  ~ O, 

whereas by the energy inequality (5.5) 

Ilv~ - vmll~ + IlSvn - Svmll~ < ~/2l[Ev,~ - Evm[l~ -+ O. 

Since L~_(T~) and L~_($) are complete spaces, there exist v , f  • L~(Tt)  and 

g • L~_($) such that Vn -~ v, Evn --+ f ,  SVn ~ g, andTvn  = 0, i.e., v • L~,s(Tt ) 

with f =/~v and g = Sv. Moreover, v can be identified with the limit in ~ of 

the Cauchy sequence v~, which implies that ~ C_ L~_,~(7~) and 

(v, ~)Je = (~v, ~:~)~. 

Let f E L~_(7¢) and g e L~(,_q) be given and consider the linear functional on 

given by 

• (w) = - ( f ,  w)~ - O, ~w)s. 

We show that this functional is bounded, i.e., ~ E j~,o* (the dual space of ~ ) :  

For all w e Cc 1 (7~) gl L~_ (T~), T w  = O, 

I~(w)l < I(f ,w)~i  + iO,$w)s i  

< II/li~liwiln + ligllsli~C~lis 

< ~v/llfll~ + Ilgll~llE~ll~ 
< eonst Ilwll~, 

where Cauchy-Schwarz has been used in the passage from the first to the second 

line, and the energy inequality has been used in the passage to the fourth line. 

Thus, ~(w) is a bounded functional that can be extended to the whole 9~. 

By the Riesz representation theorem there exists a v • ~ such that 

¢(w) = (v, w ) ~  

for all w E ~ ,  that is ,  

(Ev, Ew)p~ + (f, w)n + (g, Sw)s = 0. 
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Since this holds, in particular, for all w E C~ (7~) N L~_ (T~) for which Tw = O, 

it follows by Definition 5.4 that u = /~v  E L~,~(T/), with/~u = f and Su = g. 

This completes the proof. 1 

COROLLARY 5.12 (Existence of weak solutions): Let g E L2(8);  then there 

exists a weak solution u E L2x,w(T~) to the orthogonal dynamics, such that 

Eu = 0 and Su = g. Explicitly, 

(u, E w ) n  + (g, Sw)s  = 0 

for a11 w E C~ (T/) N L~_ (~)/ 'or  which Tw = O. 
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Append ix  A. F l o w  o n  m a n i f o l d s :  t h e  m i c r o - c a n o n i c a l  e n s e m b l e  

In this appendix we describe how to adapt the Mori-Zwanzig formalism for 

a micro-canonical ensemble, where the invariant measure is concentrated on a 

level set of the Hamiltonian (an "energy shell"). 

Assume that the Hamiltonian H is C ~ ( ~  2n). According to Sard's theorem 

[17] H has only a null set of singular values. Let c be a regular value of H, and 

define M = {x E II~ 2n : H(x)  = c}. M is an orientable manifold with measure 

dP, induced by the Lebesgue measure on ~2n. Recall that the Lebesgue measure 

can be constructed using a volume, which is a 2n-form in l~ 2n. The induced 

measure on M is constructed using a (2n - 1)-form defined on the tangent 

bundle of M; it is the Lebesgue 2n-form, with one of its arguments fixed to be 

the unit vector normal to M, divided by IVH I. The induced measure dP is the 

micro-canonical measure. It is invariant under the Hamiltonian flow. 

Let b: M ~ T M  be the Hamiltonian vector field, where T M  is the tangent 

bundle of M; the equations of motion are: 

d t 

h7 (m) = 
= m .  
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Since H is a constant of motion, m E M implies ~ ( m )  E M for all t. 

We next introduce the equivalent Liouville dynamics. For every ] E C ~ (M) 

let df denote its differential form. The differential operator L: C~(M) 
C ~ (M), defined by 

L f(m) = dr(m), b(m), 

is the Liouvillian, of the Lie derivative associated with the vector space B. One 

can show that the Liouville equation 

d t -~u (m) = (Lut)(m) 

u°(m) = g(m) 

has for solution u t (m) = g ( ~  (m)), i.e., that the Hamiltonian trajectories ~t (m) 

are the characteristic curves for the Liouville equation. 

The space C~(M) is endowed with an inner product, 

(f, g) = f fgdP, 

and can be completed into a Hilbert space L 2 (M). It is straightforward to show 

that the Lie derivative L is skew-symmetric with respect to this inner product. 

To carry out the Mori-Zwanzig decomposition it is necessary to choose the 

resolved variables, and define a projection operator which maps functions in 

L2(M) into a closed subspace of functions of the resolved variables. We show 

here how to define a projection which is the conditional expectation given the 

resolved variables. We demonstrate it for a single resolved variable g E C~(M). 
The generalization to several variables is straightforward. 

Let g E C°°(M) by given. By Sard's theorem, if c is a regular value of g, then 

Mc = {m E M : g(m) = c} is an orientable sub-manifold of M, with induced 

measure dPc. The conditional expectation of a function f E L2(M) given g is 

E[llgl(m) = f,-,(,(m))SdP,(m) 
dG( ) 
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